Курс Аналіз даних за допомогою Python
- Online
- Для начинающих
- Data Analyst / Business Intelligence (BI)
![]() |
|
Образовательный центр: | Мир Современного Образования |
---|---|
Формат: | Курс |
Язык обучения: | Ukrainian |
Длительность обучения: | 30 часов |
Начало курса: | 03.11.2025 |
Стоимость обучения: | 24 000 UAH за курс |
Подробности и регистрация
Під час навчання учасники ознайомляться з основними бібліотеками для обробки та візуалізації даних (Pandas, Numpy, Matplotlib, Seaborn), опанують методи машинного навчання (регресія, класифікація, кластеризація), а також навчаться працювати з SQL для аналізу даних у базах даних. Курс розрахований як на новачків, так і на фахівців, які прагнуть поглибити свої знання в аналізі даних.
Програма курсу
Обробка даних Pandas
- Вступ до курсу
- Налаштування середовища
- Вступ до Pandas
- Створення та робота з DataFrame і Series
- Імпорт даних із CSV, Excel, SQL Database та JSON файлів
- Індексація та фільтрація даних
- Сортування даних
- Обробка пропущених значень
- Групування та агрегування даних
- Злиття та об'єднання таблиць
Обробка даних Numpy
- Вступ до Numpy та створення масивів
- Ініціалізація масивів:
- одномірні
- двовимірні
- багатовимірні
- Індексація, зрізи та маніпуляції з елементами масиву
- Арифметичні операції та векторизація
- Обробка пропущених та некоректних значень у масивах
- Статистичні функції:
- середнє
- медіана
- стандартне відхилення
- Зміна форми масивів та об'єднання масивів
- Збереження та завантаження масивів із файлів
Візуалізація Matplotlib
- Вступ до Matplotlib та його можливості
- Створення простих графіків (лінійний, точковий, стовпчастий)
- Налаштування осей, заголовків та підписів графіків
- Зміна кольорів, стилів та маркерів графіків
- Додавання легенд, анотацій та тексту на графіки
- Побудова кількох графіків на одному полотні (subplots)
- Збереження графіків у різних форматах файлів (PNG, PDF)
- Створення спеціалізованих графіків (гістограми, кругові діаграми, коробчасті діаграми)
Візуалізація Seaborn
- Вступ до Seaborn та його особливості
- Створення графіків розподілу даних (histplot, kdeplot, distplot)
- Побудова категоріальних графіків (barplot, countplot, boxplot)
- Використання графіків відношень (scatterplot, lineplot)
- Теплові карти (heatmap) для візуалізації кореляцій та матриць
- Налаштування стилів та палітр кольорів у Seaborn
- Фасетна візуалізація (FacetGrid, pairplot) для групування даних
- Аналіз та візуалізація статистичних даних (violinplot, swarmplot)
Задача регресії
- Підготовка даних для регресії
- Розбиття даних на навчальну та тестову вибірки
- Створення моделі лінійної регресії
- Навчання моделі на навчальних даних
- Оцінка точності моделі
- Візуалізація результатів регресії
Задача класифікації
- Підготовка даних для класифікації
- Розбиття даних на навчальну та тестову вибірки
- Створення моделі класифікації (Logistic Regression, Decision Tree)
- Навчання моделі на навчальних даних
- Оцінка точності моделі (accuracy, precision, recall)
- Візуалізація результатів класифікації
Кластеризація
- Підготовка даних для кластеризації
- Вибір методу кластеризації (K-Means, Agglomerative Clustering та ін.)
- Створення та моделі кластеризації
- Візуалізація кластерів
- Оцінка якості кластеризації (silhouette score)
- Аналіз отриманих кластерів та інтерпретація результатів
Аномалії
- Підготовка даних для пошуку аномалій
- Вибір методу виявлення аномалій (Isolation Forest, Local Outlier Factor)
- Створення та навчання моделі для пошуку аномалій
- Прогнозування аномалій у даних
- Оцінка точності виявлення аномалій
- Візуалізація та інтерпретація виявлених аномалій
SQL
- Вступ до SQL та основи реляційних баз даних
- Виконання простих запитів SELECT
- Фільтрація даних за допомогою WHERE
- Сортування результатів за допомогою ORDER BY
- Агрегація даних (SUM, AVG, COUNT, MIN, MAX)
- Групування даних за допомогою GROUP BY
- З'єднання таблиць (JOIN)
Розбір домашніх проєктів
- Демонстрація кращих рішень учасників
- Демонстрація типових рішень викладача
- Підсумки курсу
Чого навчаться учасники
- Налаштовувати робоче середовище та ефективно використовувати бібліотеки Python для аналізу даних
- Обробляти, агрегувати та візуалізувати дані за допомогою Pandas та Numpy
- Створювати візуалізації за допомогою Matplotlib та Seaborn
- Опанувати методи регресії, класифікації та кластеризації для машинного навчання
- Працювати з SQL для виконання запитів і аналізу даних
- Виявляти та інтерпретувати аномалії в даних
- Розробляти рішення для реальних проєктів і презентувати їх результати
Попередні вимоги
- Базові знання Python (основні конструкції, цикли, функції)
- Уявлення про дані та базові статистичні поняття
- Досвід роботи з таблицями (наприклад, у Excel) буде перевагою, але не є обов'язковим
Особливості курсу
- Допомога ментора
- Практика
- Фінальний проєкт
- Сертифікат про проходження курсу
Категории курса
Читайте нас в Telegram, чтобы не пропустить анонсы новых курсов.
Похожие курсы
Учебный центр
Мир Современного Образования
Формат
Online
Начало обучения
30.03.2025
Длительность
24 часов
Уровень
Для начинающих, Для опытных
Язык обучения
Ukrainian
Стоимость
24 000 UAH за курс
Учебный центр
Hillel IT school
Формат
Online
Начало обучения
30.09.2025
Длительность
32 занятий
Уровень
Для опытных
Язык обучения
Ukrainian
Стоимость
19 800 UAH за курс
Учебный центр
Учебный центр «Данко»
Формат
Online
Начало обучения
Дата формується
Длительность
3 недель
Уровень
Для начинающих
Язык обучения
Ukrainian
Стоимость
уточняйте
Учебный центр
Genesis Academy
Формат
Offline+Online
Начало обучения
Дата формується
Длительность
3 месяцев
Уровень
Для начинающих
Язык обучения
Ukrainian
Стоимость
безкоштовно