Курс Data Science
- Online
- Для початківців
- Data Science / Machine learning / AI
![]() |
|
Навчальний центр: | DAN IT Education |
---|---|
Формат: | Курс |
Мова викладання: | Ukrainian |
Тривалість навчання: | 7 місяців |
Початок курсу: | 25.10.2025 |
Вартість навчання: | 6 000 UAH за місяць |
Програма курсу
Основи Python
Почнемо з вивчення Python - популярної мови програмування про дані та машинного навчання. Будемо вивчати базові принципи програмування, такі як змінні (типи даних, наприклад, числа, рядки, списки тощо), операції з ними (математичні операції, конкатенація тощо). Окрім того, навчимося працювати з функціями та модулями (як розбивати програму на частини для зручності), та класами (основи об'єктно-орієнтованого програмування).
Обробка даних у Python
Модуль навчить вас працювати з даними, що є основною задачею Data Science, індексувати (звертатися до окремих елементів в списках чи масивах). Також розглянемо обробку файлів (наприклад, CSV, Excel), як зчитувати дані з файлів та обробляти їх. Після цього ви зможете очищати дані від помилок, пропущених значень або непотрібних елементів.
Бібліотека Pandas
Це одна з найпопулярніших бібліотек для роботи з даними. Вона допомагає зберігати дані у табличних структурах, які називаються DataFrame. Познайомимось з методами очищення та попередньої обробки даних.
Matplotlib та Seaborn
Після обробки даних, ми перейдемо до їх візуалізації. Matplotlib - це бібліотека для створення графіків, а Seaborn - її розширення для зручнішого малювання. Візуалізація допомагає зрозуміти, що відбувається з даними.
Математика та статистичний аналіз
Математика та статистика, необхідні для роботи з даними. Ви дізнаєтесь, що таке множення матриць, вектори, середнє, медіана, дисперсія та як прогнозувати ймовірність подій. Це все важливо, тому що для побудови ефективних моделей машинного навчання потрібно розуміти ці концепції.
Введення до машинного навчання
Ми почнемо з життєвого циклу проєкту - від постановки задачі до тренування моделі. Ви дізнаєтесь, як поділити дані на тренувальний і тестовий набори (метод Train-test split, CV), як створювати pipeline - конвеєра машинного навчання.
Лінійна регресія
Лінійна регресія - це основний метод для прогнозування числових значень. Вона працює, припускаючи, що існує лінійний зв'язок між змінними (ознаками).
Логістична регресія
Логістична регресія використовується для задач класифікації. Вона дає ймовірність того, до якого класу належить об'єкт, і працює за принципом, що клас може бути "так" або "ні".
Дерево рішень (Decision Trees)
Дерево рішень розбиває дані на основі простих запитань, що дає уявлення про те, як можна класифікувати об'єкти. Ви вивчите, як використовувати дерево рішень для класифікації та регресії, а також як налаштовувати його для кращої ефективності.
K-Nearest Neighbor, KNN
KNN - алгоритм для класифікації даних, який використовує принцип, що схожі об'єкти знаходяться поруч. Тобто, для визначення, до якого класу належить новий об'єкт, алгоритм дивиться на найближчих сусідів.
Кластеризація даних
Процес поділу даних на групи, де об'єкти в кожній групі схожі між собою. Ми розглянемо K-means та GMM для кластеризації об'єктів за групами.
Метрики
Метрики дозволяють оцінювати, наскільки добре працюють моделі машинного навчання. Вивчите такі метрики, як точність (accuracy), precision (точність), recall (повнота), F1-score (комбінація точності і повноти) та AUC-ROC (криві для порівняння моделей).
Бустинг
Бустинг - це метод покращення точності моделей. Він комбінує слабкі моделі в сильну модель. Це може значно покращити результат.
Завершення розмірності та оптимізація гіперпараметрів
Ефективність моделей машинного навчання підвищується завдяки методам зменшення розмірності. Ми розглянемо методи зменшення вхідних ознак PCA, UMAP, t-SNE. Також ви дізнаєтесь, як налаштовувати параметри моделей (гіперпараметри), використовуючи методи оптимізації.
Нейронні мережі
Розділ охоплює основи Deep Learning - глибоких нейронних мереж. Ми навчимося створювати прості MLP (Multilayer Perceptrons) і розберемо їх використання в реальних задачах, таких як обробка зображень. Згодом ми познайомимось з CNN, нейромережею, призначеною для роботи з двовимірними зображеннями.
Tensorflow 2
TensorFlow - це бібліотека для створення складних моделей машинного навчання. Вона дозволяє швидко створювати та тренувати моделі, оптимізувати їх, а також зберігати та завантажувати готові моделі.
Google Colab
Google Colab - це хмарне середовище для тренування моделей, яке дозволяє вам використовувати потужні графічні процесори (GPU). Ми навчимося працювати з Colab для тренування моделей Deep Learning.
Natural Language Processing (NLP)
NLP - займається обробкою та аналізом текстових даних. Ми будемо використовувати бібліотеки NLTK і spaCy для обробки тексту: токенізації, лемматизації, виділення сутностей та багато іншого.
Особливості курсу
- Допомога ментора
- Практика
- Сертифікат про проходження курсу
Викладачі курсу
- Даніель Андерсон - Machine Learning Research Engineer
- Іван Гомонець - BI Tech Lead at GROWE
- Павло Чернега - Lead Machine Learning Engineer
Категорії курсу
Читайте нас в Telegram, щоб не пропустити анонси нових курсів.