Курс Machine Learning

  • Online
  • Для опытных
  • Data Science / Machine learning / AI
Образовательный центр: Hillel IT school
Формат:Курс
Язык обучения:Ukrainian
Длительность обучения:20 занятий
Начало курса:20.01.2025
Стоимость обучения:12 700 UAH за курс

Можлива оплата частинами. При оплаті за весь курс одним платежем діє знижка 10%.

На курсі розглянете різні завдання машинного навчання з точки зору роботи з даними й особливостями різних моделей використовуючи мову Python, здобудете навички роботи з традиційними алгоритмами і методами машинного навчання, нейронними мережами, а також обробкою природних мов і комп'ютерним зором.

Програма курсу

Introduction to Machine Learning

  • Що таке AI/DS/ML/DL?
  • Роль математики у ML
  • Роль статистики у ML
  • Задачі, що вирішує ML
  • Етапи реалізації проєктів із ML
  • Збір і обробка даних у ML, джерела даних та їх особливості
  • Огляд основних інструментів у ML з використанням Python

Machine Learning Basic Tool: NumPy

  • Що таке NumPy?
  • Типи даних та їх атрибути
  • Масиви
  • Операції з масивами
  • Сортування масивів

Machine Learning Basic Tool: Pandas

  • Що таке Pandas?
  • Структури й типи даних у Pandas
  • Імпортування й експортування даних у Pandas
  • Огляд даних у Pandas
  • Операції з даними в Pandas

Data Visualization

  • Призначення і важливість візуального аналізу й візуалізації даних
  • Первинний аналіз даних
  • Модулі matplotlib, seaborn, plotly
  • Побудова простих графіків однієї змінної
  • Побудова графіків двох і більше змінних
  • Аналіз графіків (перевірка кореляції, аутлейєрів…)
  • Побудова нових змінних вручну
  • Побудова нових змінних за допомогою бібліотек

Linear Regression & Regularization

  • Лінійні моделі в задачах регресії
  • Навчання моделі лінійної регресії
  • Лінійна регресія в scikit-learn
  • Градієнтний спуск у задачах лінійної регресії
  • Стохастичний і mini-batch градієнтний спуск
  • Перенавчання і недонавчання. Гіперпараметри
  • Регулярізація
  • Крос-валідація

Logistic Regression & Machine Learning Metrics

  • Метрики якості
  • Метрики якості в задачах регресії
  • Метрики якості в задачах класифікації
  • Метрики якості в scikit-learn
  • Метричні моделі
  • Принцип передбачення в метричних моделях
  • Метрики відстані
  • KNN класифікатор і регресор у scikit-learn

Tree Based Models

  • Ідея роботи моделей на основі дерев рішень
  • Тренування дерева рішень
  • Критерії зупинки й "підстригання" дерев
  • Дерева рішень і категоріальні фічі
  • Приклади реалізації в scikit-learn
  • Bias-Variance Tradeoff
  • Bagging
  • Boosting
  • Stacking

SVM & Clustering

  • SVM
  • Ідея алгоримту. Робота на лінійно роздільних даних
  • SVM на лінійно нероздільних даних
  • Ядра. Метод вікна Парзена
  • Кластеризація
  • Unsupervised learning
  • Основні алгоритми кластеризації
  • k-means
  • Ієрархічна кластеризація
  • Кластеризація за щільністю об'єктів
  • Інші методи кластеризації
  • Метрики оцінки якості кластеризації

Dimensionality Reduction

Recommender Systems

Introduction to Deep Learning

  • Визначення Deep Learning
  • Задачі, що вирішуються за допомогою Deep Learning
  • Нейронні мережі
  • Основні фреймворки для Deep Learning
  • Ознайомлення з PyTorch
  • Тензори
  • Набори даних і завантажувачі даних
  • Побудова нейронної мережі
  • Автоматичне обчислення похідних
  • Оптимізація параметрів моделі
  • Збереження і завантаження моделі

Deep Learning: Layers

  • Linear Layers
  • Convolutional Layers
  • Pooling Layers
  • Normalization Layers
  • Embedding Layers
  • Dropout Layers
  • Special Layers
  • Activation Layers
  • Gradient Explosion
  • Gradient Vanishing
  • Weight Initializations

Deep Learning: Optimization

  • Optimization: General Ideas
  • Gradient Descent
  • Stochastic Gradient Descent
  • SGD with Momentum
  • Nesterov Momentum
  • RMSProp
  • Adam

Introduction to Computer Vision

  • Image Classification
  • Image Segmentation
  • Object Detection
  • Object Tracking
  • Facial Recognition
  • Pose Estimation
  • Gesture Recognition
  • Optical Character Recognition (OCR)
  • Image Restoration
  • Image Generation
  • OpenCV
  • Albumentations

Computer Vision: Classification Models

  • ImageNet Dataset
  • LeNet
  • AlexNet
  • VGG
  • GoogLeNet (Inception v1)
  • Inception v2
  • ResNet
  • DenseNet
  • MobileNet v1
  • MobileNet v2
  • MobileNet v3
  • EfficientNet
  • EfficientNet v2

Computer Vision: Segmentations Models

  • Segmentation Datasets
  • Metrics
  • FCN
  • SegNet
  • U-Net
  • LinkNet
  • FPN
  • ENet
  • PSPNet
  • DeepLab v3
  • DeepLab v3+

Computer Vision: Object Detection

  • Introduction to Object Detection
  • Object Detection Metrics
  • Non-Maximum Suppression (NMS)
  • Viola-Jones Detectors
  • HOG Detector
  • Deep Learning-based Detection Methods
  • Two and One Stage Detectors
  • R-CNN
  • Fast R-CNN
  • Faster R-CNN
  • FPN

Introduction to Natural Language Processing

Natural Language Processing: Embeddings

Transformers

  • Transformer
  • GPT
  • BERT
  • Vision Transformer (ViT)

Reinforcement Learning

Особливості курсу

  • Курс розрахований на IT-фахівців та інженерів будь-якої спеціальності, які знають Python, лінійну алгебру, математичний аналіз і статистику на рівні першого курсу технічного вузу
  • Впродовж навчання будуть розглянуті різні завдання машинного навчання з точки зору роботи з даними та особливостей різних моделей машинного навчання, візуалізація отриманих результатів
  • Заняття в режимі онлайн
  • Доступ до відеозаписів занять в особистому кабінеті
  • В кінці курсу виконується дипломний проєкт
  • Оперативна служба підтримки студентів
  • Викладачі курсу - практикуючі фахівці, що працюють в топових компаніях
  • Можливість повернути всі внесені за навчання кошти до шостого заняття
  • Бонуси курсу:
    • тренінги по проходженню співбесіди та складанню резюме з HR-фахівцем компанії
    • тестова співбесіда з технічним фахівцем

Викладачі курсу

  • Денис Ступак - Senior Data Analyst
  • Андрій Полухін - Machine Learning Engineer at Data Science UA
  • Євген Краснокутський - Team Lead at MobiDev
  • Дмитро Дорошенко - Senior Machine Learning Engineer at Triple A Technology Hub Kyiv
  • Олег Коменчук - Data Scientist at Onseo
  • Руслан Хоменко - ML Engineer at Postindustria
  • Вероніка Вознюк - Data Scientist at AI EdgeLabs
  • Юрій Лозинський - Machine Learning Engineer at SciForce Solutions

Категории курса

Читайте нас в Telegram, чтобы не пропустить анонсы новых курсов.

Похожие курсы

Учебный центр
Robot Dreams
Формат
Online
Начало обучения
01.04.2024
Длительность
35 занятий
Уровень
Для начинающих, Для опытных
Язык обучения
Ukrainian
Стоимость
уточняйте
Учебный центр
Main Academy
Формат
Online
Начало обучения
Дата формується
Длительность
65 часов
Уровень
Для начинающих
Язык обучения
Ukrainian
Стоимость
22 000 UAH за курс
Учебный центр
Мир Современного Образования
Формат
Online
Начало обучения
Дата формується
Длительность
45 часов
Уровень
Для начинающих
Язык обучения
Ukrainian
Стоимость
40 000 UAH за курс
Учебный центр
Neoversity
Формат
Online
Начало обучения
30.09.2025
Длительность
24 месяцев
Уровень
Для начинающих
Язык обучения
Ukrainian, English
Стоимость
3 900 EUR за курс