Курс Data Science with Python

  • Online
  • Для опытных
  • Python, Data Science / Machine learning / AI
Образовательный центр: Robot Dreams
Формат:Курс
Язык обучения:Ukrainian
Длительность обучения:17 занятий
Начало курса:29.05.2025
Стоимость обучения:Уточняйте

Курс навчить розв'язувати основні задачі Data Science за допомогою поглибленої роботи з Python та його бібліотеками. В результаті ви зможете будувати просунуті візуалізації, знаходити взаємозв'язки в даних, робити прогнози та навчати моделі.

Програма курсу

Задачі Data Science. Interactive Python і знайомство з NumPy

  • Дізнаєтеся, чим машинне навчання відрізняється від класичного програмування, та ознайомитеся з видами задач машинного навчання
  • Опануєте інструменти для інтерактивної роботи з Python [IPython, Jupyter Notebook та Google Colaboratory]
  • Познайомитеся з бібліотекою NumPy
  • Навчитеся працювати з типом даних Array: ініціалізація, характеристики, копіювання, типи даних, reshape, фільтрація, сортування
  • Вивчите базові математичні функції Array
  • Навчитеся створювати масиви та виконувати базові операції над ними в бібліотеці NumPy

NumPy. Лінійна алгебра і статистика

  • Отримаєте коротке введення до лінійної алгебри та розберете на прикладах, як ці математичні функції працюють у бібліотеці NumPy
  • Навчитеся використовувати математичні та статистичні функції в NumPy
  • Навчитеся вводити та виводити NumPy-матриці та масиви різної величини

Знайомство з Pandas

  • Дізнаєтеся, навіщо потрібна бібліотека Pandas і що вона дозволяє робити з даними
  • Ознайомитеся зі структурами даних у Pandas (Series та Dataframe) і навчитеся проводити базові операції над ними
  • Навчитеся створювати, імпортувати та експортувати табличні дані в Pandas Dataframe
  • Навчитеся маніпулювати табличними даними
  • Дізнаєтесь, як швидко та зручно працювати з табличними даними за допомогою Pandas

Візуалізація даних

  • Ознайомитеся з бібліотекою Matplotlib
  • Навчитеся будувати базові візуалізації в Python за допомогою Matplotlib
  • Дізнаєтеся про три способи візуалізувати дані в Pandas Data Frame
  • Навчитеся будувати просунуті візуалізації: heatmap, box plot, pair plot, cumulative plot
  • Навчитеся будувати базові інтерактивні візуалізації

Exploratory Data Analysis (EDA) та очистка даних

  • Дізнаєтеся, що таке Exploratory Data Analysis (EDA) та його основні компоненти
  • Навчитеся швидко розуміти структуру набору даних будь-якого розміру
  • Дізнаєтеся, що робити з пропущеними даними та дублікатами
  • Навчитеся проводити EDA за допомогою Pandas, SweetViz, Pandas Profiling

Пошук та видалення пропущених значень

  • Дізнаєтеся, що таке пропущені значення та чому їх треба опрацьовувати
  • Ознайомитеся з типами пропущених значень (випадкові, наслідки системної помилки тощо)
  • Навчитеся виявляти пропущені значення у вибірці даних
  • Ознайомитеся з різними способами заповнення пропущених значень і навчитеся використовувати кожен із них

Задача прогнозування. Лінійна регресія. Градієнтний спуск

  • Розберете модель простої лінійної регресії та її математичну основу
  • Ознайомитеся з методом найменших квадратів і методом градієнтного спуску
  • Навчитеся тренувати модель лінійної регресії за допомогою бібліотеки scikit-learn
  • Дізнаєтесь, як оцінювати якість моделі лінійної регресії, та навчитеся працювати з метриками MSE і RMSE

Інші типи регресій

  • Розберете модель багатовимірної лінійної регресії та навчитеся будувати її за допомогою scikit-learn
  • Навчитеся інтерпретувати коефіцієнти лінійної регресії
  • Розберете модель поліноміальної регресії
  • Дізнаєтесь, як оцінювати якість моделі за допомогою метрик MAE, MAPE, R-squared
  • Розберете моделі гребінцевої регресії, регресії за методом LASSO та регресії "еластична мережа"

Вибір найкращої моделі. Техніки валідації. Пошук гіперпараметрів

  • Дізнаєтеся, навіщо розбивати вибірку на train/validation/test-вибірки
  • Зрозумієте, в чому відмінність validation- і test-вибірок
  • Дізнаєтеся, що таке гіперпараметри моделі та в чому їхня відмінність від параметрів
  • Ознайомитеся з методами підбору гіперпараметрів і навчитеся викликати їх у scikit-learn
  • Дізнаєтеся, що таке перехресна валідація та як використовувати її в sklearn
  • Зрозумієте, що таке overfit i underfit (і чому це проблема)
  • Навчитеся застосовувати регуляризацію в моделях регресії

Задача класифікації. Логістична регресія

  • Дізнаєтесь, як навчати модель логістичної регресії для класифікації даних і оцінювати її якість
  • Отримаєте алгоритм дій у випадку мультикласової класифікації та зрозумієте, як оцінити якість таких моделей

Модель "дерева рішень"

  • Ознайомитеся з моделлю "дерева рішень" і дізнаєтеся, в чому її відмінність від лінійних моделей
  • Навчитеся будувати модель "дерева рішень" у scikit-learn

Ансамблі моделей

  • Зрозумієте, як працюють ансамблі моделей і в чому їхні переваги
  • Розберете базові (Max Voting, Averaging, Weighted Averaging) та просунуті (Stacking, Bagging, Boosting) техніки побудови ансамблів
  • Навчитеся будувати різні типи ансамблів моделей
  • Дізнаєтеся, який спосіб ансамблювання потрібно використати у випадку high bias, а який - у випадку high variance

Алгоритми бустингу: адаптивний та градієнтний бустинг. Бібліотеки XGBoost

  • Вивчите принципи роботи адаптивного і градієнтного бустингів
  • Ознайомитеся з функціями бібліотеки XGBoost, розберете її особливості та переваги

Кластерний аналіз даних

  • Розберете модель кластеризації як приклад задачі навчання без учителя
  • Розберете моделі кластеризації K-Means, DBSCAN, Agglomerative Clustering, а також їхні особливості побудови та принципи роботи на практиці
  • Навчитеся виявляти групи схожих екземплярів даних за допомогою кластеризації

Вибір ознак. Зменшення розмірності даних

  • Навчитеся зменшувати розмірність набору даних із великою кількістю ознак
  • Навчитеся обирати фічі так, щоб залишити лише найбільш значущі для моделі
  • Дізнаєтесь, як працюють і чим відрізняються методи зменшення розмірності SVD, PCA та LDA

Статистичний аналіз даних

  • Ознайомитеся з бібліотекою SciPy
  • Навчитеся генерувати випадкові величини різних імовірнісних розподілів, проводити тести нормальності та порівнювати розподіли двох випадкових величин
  • Вивчите основи перевірки статистичних гіпотез: помилки I та II роду, p-value
  • Дізнаєтесь, як проводити А/В-тестування та перевіряти гіпотези

Співбесіди й вимоги до них. Розповсюджені помилки у домашніх завданнях

Особливості курсу

  • Заняття щопонеділка та щочетверга
  • Інструменти для роботи
  • Сильний контент
  • Практика
  • Кар'єра: розширення стеку навичок

Викладачі курсу

  • Олександра Кардаш - Senior Software Engineer at Google
  • Ірина Безкровна - Technical Data Lead at Xometry

Читайте нас в Telegram, чтобы не пропустить анонсы новых курсов.

Похожие курсы

Учебный центр
Mate academy
Формат
Online
Начало обучения
Будь-який момент
Длительность
7 месяцев
Уровень
Для начинающих
Язык обучения
Ukrainian
Стоимость
54 740 UAH за курс
Учебный центр
Projector
Формат
Online
Начало обучения
30.09.2025
Длительность
3 месяцев
Уровень
Для начинающих
Язык обучения
Ukrainian, English
Стоимость
22 500 UAH за курс
Учебный центр
Projector
Формат
Online
Начало обучения
Дата формується
Длительность
3 месяцев
Уровень
Для опытных
Язык обучения
Ukrainian
Стоимость
25 500 UAH за курс
Учебный центр
Platma Academy
Формат
Online
Начало обучения
17.06.2024
Длительность
4 месяцев
Уровень
Для начинающих
Язык обучения
Ukrainian
Стоимость
уточняйте